超聲波法合成納米二氧化鈦粉末晶體的制備及表征
【引言】
納米材料的出現(xiàn)對(duì)化學(xué)、電子、生物技術(shù)等多個(gè)科學(xué)技術(shù)領(lǐng)域產(chǎn)生了重大影響。納米材料在光學(xué)、電學(xué)、磁性、催化、生物或機(jī)械等領(lǐng)域的廣泛應(yīng)用源于其*的、可調(diào)諧的納米結(jié)構(gòu),使其合成成為有前景和挑戰(zhàn)性的研究和發(fā)展領(lǐng)域之一。納米粒子/納米材料具有新穎的物理、化學(xué)和機(jī)械性能,可作為解決能源、環(huán)境、健康、通信和相關(guān)領(lǐng)域問(wèn)題的創(chuàng)新解決方案的主要組成部分。納米材料的功能依賴于表面積與體積比,因?yàn)榕c周圍介質(zhì)的相互作用很大程度上取決于表面面積的大小和材料表面的性質(zhì)。納米二氧化鈦因其在陶瓷、氫和一氧化碳?xì)怏w傳感器、催化和光催化應(yīng)用(包括醫(yī)藥、環(huán)境清潔、消毒、水制氫、人工光合作用、太陽(yáng)能電池薄膜應(yīng)用以及自清潔/抗菌/親水性表面)等方面的潛力和應(yīng)用而受到廣泛關(guān)注。
【成果介紹】
Özlem Ça?lar Duvarci等人在不使用任何模板或化學(xué)品的情況下,通過(guò)超聲波處理乙醇-水混合物,水解異丙醇鈦合成納米介孔二氧化鈦粉末晶體。將異丙醇-鈦混合物滴加到置于超聲波浴中的水-乙醇混合物中。將超聲化學(xué)合成的粉末與采用德固賽P-25二氧化鈦粉末制備的未經(jīng)過(guò)超聲處理的粉末的性能進(jìn)行了比較。測(cè)定了相結(jié)構(gòu)、晶粒尺寸、比表面積、粒度、粉末密度,并對(duì)燒結(jié)行為進(jìn)行了分析。在25 °C條件下,以銳鈦礦和板鈦礦相的混合物為原料,采用超聲波誘導(dǎo)水解法制備了納米二氧化鈦粉末(TiO2-U)。在70 °C條件下檢測(cè)了未經(jīng)超聲處理制備的納米二氧化鈦粉末(TiO2-NoU)中的板鈦礦相。兩種粉末的銳鈦礦-金紅石相轉(zhuǎn)變均在500-700 °C范圍內(nèi)完成。在25 °C下,TiO2-NoU和TiO2-U的平均晶粒尺寸分別為10 nm和5 nm。當(dāng)煅燒溫度從200 °C提高到500 °C時(shí),TiO2-NoU的表面積從238減小到106 m2/g, TiO2-U的表面積從287減小到82 m2/g。采用LINSEIS的熱膨脹儀L76測(cè)定了粉末在210兆帕的等靜壓下壓實(shí)的致密化行為,升溫速率為5 °C /min或10 °C /min,高可達(dá)1200 °C。氮?dú)獾奈?解吸行為隨煅燒溫度的變化以及相應(yīng)的孔徑分布/體積的變化,與粉末合成和煅燒過(guò)程中緊密堆積的亞微米團(tuán)聚體的形成有關(guān)。結(jié)果表明燒結(jié)行為受7-10 nm微晶和亞微米團(tuán)聚體的控制。用不同方法和不同濃度摻雜劑制備的二氧化鈦粉末的致密化行為的測(cè)定,對(duì)于更好地理解相/孔結(jié)構(gòu)的演化是非常有用的,而相/孔結(jié)構(gòu)的演化對(duì)許多應(yīng)用都是至關(guān)重要的。
【圖文導(dǎo)讀】
圖1 超聲輻照法制備納米二氧化鈦工藝流程
圖2 425 °C熱處理的納米二氧化鈦(TiO2-U)(□)和德固賽P-25(◊)的pH值與ζ電位變化的關(guān)系
圖3 TiO2-NoU在(a)25 °C、(b)70 °C、(c)100 °C、(d)250 °C、(e)300 °C、(f)400 °C、(g)500 °C、(h)600 °C、(k)700 °C和(l)800 °C下熱處理的XRD圖譜
圖4 TiO2-U在(a)25 °C、(b)70 °C、(c)150 °C、(d)250 °C、(e)300 °C、(f)400 °C、(g)500 °C、(h)600 °C、(k)700 °C和(l)800 °C下熱處理的XRD圖譜
圖5 (a)TiO2-NoU和(b)TiO2-U粉末中各晶相質(zhì)量分?jǐn)?shù)隨溫度的變化
圖6溫度對(duì)(a)TiO2-NoU和(b)TiO2-U粉末平均晶粒尺寸(ACS)和表面等效粒徑(SAEPS)的影響
圖7 TiO2-NoU二氧化鈦粉末在200 °C(□)、300 °C(◊)、400 °C(Δ)和500 °C(×)加熱的(a)N2吸附等溫線和(b)BJH解吸的孔隙大小分布
圖8 TiO2-U二氧化鈦粉末在200 °C(□)、300 °C(◊)、400 °C(Δ)和500 °C(×)加熱的(a)N2吸附等溫線和(b)BJH解吸的孔隙大小分布
圖9德固賽P-25(□)的(a)N2吸附等溫線和(b)BJH解吸的孔隙大小分布
圖10 (a) TiO2-NoU和(b) TiO2-U粉末的BET表面積的變化(□)和基于BJH解吸的孔隙大?。?loz;)與溫度的關(guān)系
圖11 TiO2-U中納米二氧化鈦密度的變化(◊)和金紅石質(zhì)量分?jǐn)?shù)(□)與溫度的關(guān)系
圖12 (a)德固賽P-25、TiO2-NoU和TiO2-U在N2氣氛下的TGA曲線,(b) TiO2-NoU和TiO2-U粉末在25℃干燥后的FTIR曲線
圖13 DLS測(cè)量的(a)TiO2-U作為析出物、(b)TiO2-U-425、(c)德固賽P-25的粒徑分布
圖14 德固賽P-25、TiO2-NoU和TiO2-U在升溫速率(a)5 °C/min和(b)10 °C/min時(shí)的收縮曲線
圖15 德固賽P-25、TiO2-NoU和TiO2-U在升溫速率(a)5 °C/min和(b)10 °C/min時(shí)收縮曲線的一階導(dǎo)數(shù)
【結(jié)論】
在室溫下經(jīng)超聲或未超聲輻照水解異丙醇鈦制備了納米二氧化鈦粉末晶體。超聲輻照在水解過(guò)程中的應(yīng)用有利于板鈦礦相的形成,晶粒更小,比表面積/孔體積更大,孔徑分布更窄。在500 °C熱處理后得到純銳鈦礦相。TiO2-NoU和TiO2-U粉末銳鈦礦轉(zhuǎn)化金紅石相的過(guò)程均在500-550 °C范圍內(nèi)開始,在800 °C條件下完成。TiO2-NoU和TiO2-U粉末呈介孔結(jié)構(gòu),具有較高的吸附能力。另一方面,工業(yè)德固賽P-25粉末具有大孔結(jié)構(gòu)。熱處理使孔隙尺寸分布變寬,孔隙體積減小,這可能與小孔隙的坍塌和大晶粒的形成有關(guān),從而使孔隙結(jié)構(gòu)變粗。FTIR分析證實(shí)了Ti(OH)4的存在,TGA分析檢測(cè)了其在加熱至200 °C時(shí)向TiO2的轉(zhuǎn)化。TiO2-NoU粉末的總失重率比TiO2-U粉末高約5 wt.%。DLS粒度分析顯示TiO2-U-425粉末中存在25 nm和109 nm顆粒(分別約為97.8%和2.2%)。納米二氧化鈦的膨脹收縮曲線表現(xiàn)為兩級(jí)燒結(jié)行為,前者在500-850 °C范圍內(nèi)由微晶(7–10 nm)控制,后者由亞微米范圍的團(tuán)聚體控制。利用收縮曲線的一階導(dǎo)數(shù)分析了粉末燒結(jié)過(guò)程中粉末的相結(jié)構(gòu)演化,為鈦納米材料的表征提供了依據(jù)。